Beep, Beep: Making Sense of Clinical Anesthetic Monitors

Lindsey Culp Snyder, DVM, MS, DACVA

University of Wisconsin

Madison, WI

1. Why do we monitor anesthesia?

- a. Patient's normal physiology is altered by anesthetic drugs
- b. Compensatory mechanisms are diminished by anesthetics
- c. Concurrent diseases will alter normal physiology
- Monitoring improved the patient's success by allowing for informed, timely responses to changes in status
 I. Proactive decisions versus reactive decisions
- e. Provides a good reference for additional anesthetic procedures
- 2. What do we need to know before we can monitor properly?
 - a. Pharmacology of anesthetic drugs
 - b. Pharmacology of current medications
 - c. Normal physiology
 - d. ASA status
 - e. Anesthetic record
 - f. Monitors
 - I. What information they provide
 - II. What information we can interpret from their use
- 3. How do we develop a monitoring plan?
 - a. Develop a plan based on body systems
 - b. Considerations of health
 - I. Current health status
 - II. Concurrent diseases
 - c. Procedure to be done
 - d. Available monitoring devices
 - e. Plan to monitor more than one system and more than one variable per system
- 4. Methods
 - a. Indirect/noninvasive
 - I. Readily apparent variables
 - II. Noninvasive testing
 - III. Easily attainable, no advanced skills needed, easily reproducible
 - IV. Minimal secondary complications
 - V. Limited amount of data to be collected
 - b. Direct/invasive
 - I. Placing instruments inside the body
 - II. Increased data to be obtained
 - III. Less error in data that is collected
 - IV. Secondary complications
 - V. Advanced knowledge and skill needed
- 5. Central nervous system
 - a. Anesthesia requires CNS depression
 - b. Movement on the table
 - c. Diligent monitoring helps maintain a stable plane of anesthesia
 - d. Monitor reflex activity
 - I. Eye signs (palpebral, corneal, pupil location)
 - II. Pedal reflexes
 - e. Skeletal muscle relaxation
 - f. EEG/BIS
 - g. End-tidal anesthetic gas concentration
 - I. MAC
- 6. Respiratory system
 - a. Readily available data with obsevation
 - I. Rate (Stethoscope, breathing frequency monitors, pulse oximeter, etc.)
 - II. Pattern
 - III. Tidal volume changes
 - b. Pulse oximeter
 - I. Pulse rate

- II. Oxygen saturation (SpO2)
- III. Does not measure adequacy of ventilation!!!
- IV. Needs a pulsatile signal for an accurate reading, therefore errors can occur with hypothermia, hypotension, changes in vascular resistance
- V. Needs an understanding of the oxyhemoglobin dissociation curve for proper interpretation
- c. End-tidal carbon dioxide monitor (CO2)
 - I. Most valuable monitor for assessing the adequacy of ventilation !!!
 - II. Capnometer vs. capnograph
 - III. Estimation of the alveolar CO2 concentration
 - IV. Must use when controlling ventilation
 - V. Normal value is 40 mmHg
- d. Gas monitors
- e. Spirometry
 - I. Quantitate the tidal volume
- f. Hemoglobin concentrations
- g. Blood gas analysis
- Cardiovascular system
- a. Heart rate

7.

- I. Direst palpation
- II. Ultrasonic Doppler
 - 1) Piezoelectric crystal
 - 2) Amplifies the sound of blood flow under the crystal
 - 3) Can be used for blood pressure as well
- III. Pulse oximeter
- b. Peripheral perfusion
 - I. Function of arterial blood pressure and local vasomotor tone
 - II. Normal capillary refill time of 1-2 seconds
 - III. Urine production can be used
- c. Central venous pressure (CVP)
 - I. Assessing patient's blood volume
 - II. Affected by blood volume, vascular tone, cardiac contractility, heart rate, an non-cardiac factors (body position)
- d. Blood pressure!
 - I. Most important monitoring modality for assessment of the cardiovascular system
 - II. Can be made either directly or, more commonly, indirectly
 - III. Oscillometric monitors
 - 1) Slowly releases air from the cuff (placed over a peripheral artery) until arterial pulsations are detected by the monitor and are then displayed by the monitor
 - 2) Display the systolic, diastolic and mean blood pressure
 - 3) Inaccurate in smaller patients and at low blood pressures, but should accurately reflect trends in the BP
 - 4) Heart rate as well
 - IV. Ultrasonic Doppler
 - 1) Doppler crystal placed over a peripheral artery
 - 2) Appropriately sized cuff placed proximal to the crystal
 - 3) With the use of a sphygmomanometer air is slowly released from the cuff until a pulse is heard on the Doppler
 - 4) The pulse corresponds most closely to the systolic blood pressure in dogs and the mean arterial blood pressure in cats
 - 5) Doppler apparatus can be inaccurate at lower blood pressures
 - V. Direct arterial BP
 - VI. Arterial catheter.
 - VII. Accurate quantitative arterial BP value and a qualitative representation of the arterial pulse waveform
 - VIII. Systolic, diastolic, and mean arterial BP's easily measured and displayed using this method.
 - IX. Very accurate